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ABSTRACT: With the increasing frequency of urban floods caused by heavy precipitation in the Philippines, flood 

mitigation strategies to improve the city’s resilience must be rigorously pursued. Recent advances in digital technology, 

such as probability-based modeling, have provided an effective means to identify areas in which such strategies should 

be implemented. This paper gives a comprehensive analysis of the potential of probability-based modeling to help 

anticipate urban floods in Mandaue City, Philippines using probability density function (PDF). PDF is a statistical 

technique used to model the probability of an event occurring based on previous data. In this study, we use GIS by 

combining different layers containing flooding risk factors such as elevation and land use with existing historical data 

on flood events in the area. This combination can then be used to create a PDF that can show the probability of an urban 

flood occurring at various locations, which can allow for informed decision making around flood risk management. The 

results of this study seeks to inform stakeholders in order to create specific strategies for urban environments that could 

be used to reduce flooding risks and more importantly, offers a framework for other cities to apply probability-based 

modeling to generate tailor-made strategies for flood resilience. 

 

 

1. INTRODUCTION 

 It has been observed that the combined effects of swift urban expansion and the impacts of climate change have given 

rise to a multitude of ecological challenges and unfortunate events (Rahmati et al., 2019). Floods can result in a large 

number of fatalities, harm to ecosystems, and socioeconomic effects (De Silva & Kawasaki, 2020). Floods can happen in 

two ways: naturally, through heavy rain, snowmelt, and extended periods of rainfall; or unnaturally, through greater 

degradation brought on by population growth, deforestation, and urbanization (Chan et al., 2018; Şen, 2018; Wang et al., 

2019; Van & Schwarz, 2020).  

 Numerous nations across the globe have experienced flooding, and Philippines is no different. Within the geographical 

context of the Philippines, an average of 20 tropical cyclones are encountered each year, with the apex of this phenomenon 

transpiring between July and October, constituting approximately 70% of the total typhoon occurrences (Santos, 2020). 

 One of the major challenges in flood mapping is providing a precise estimate of the flood extent and damage in 

affected areas (Esfandiari et al., 2020). To address this issue, several methods with distinct strengths and weaknesses have 

been developed for the purpose of creating flood prediction maps. Many studies have employed multi-criteria decision 

analysis and probabilistic models for flood mapping (Wang et al., 2011; Masood & Takeuchi 2012). Additionally, another 

study utilized random-forest and boosted-tree models to map flood susceptibility and evaluate the prediction ability of 

the models using metrics like the area under the curve (AUC) (Sunmin et al., 2017). Numerous research comparing several 

probability distributions with various parameter estimation techniques for on-site food frequency analysis have been 

published in the past (Hassan et al., 2019). For this analysis, we employ the Random Forest algorithm (Ho 1995; Breiman 

2001). This algorithm constructs numerous decision trees and offers insights into the significance of various parameters 

in the decision-making process. 

 A significant challenge confronting researchers is the intricate nature of the multitude of conditioning factors, 

encompassing hydrological, topographical, and geological layers. Additionally, augmenting machine learning algorithms 

with additional conditioning factors holds the potential to yield improved outcomes (Esfandiari, et al., 2020). Common 

factors affecting flood prediction among related studies are aspect, curvature, elevation, flow accumulation, flow direction, 

geology, slope percentage, land use, Normalized Difference Vegetation Index (NDVI), rainfall, distance from rivers, soil 

group, Stream Power Index (SPI), Sediment Transport Index (STI), Terrain Roughness Index (TRI), and Topographic 

Wetness Index (TWI) (Aldiansyah & Wardani, 2023; Esfandiari, et al., 2020; Sunmin et al., 2017). 



 

2023 Asian Conference on Remote Sensing (ACRS2023) 

 This research endeavour aims to investigate flood forecasting within the boundaries of Mandaue City. The approach 

employed for this investigation involves probability-based modeling, specifically utilizing the capabilities of the random 

forest algorithm. 

 

2. METHODOLOGY 

2.1 Study Area 

 Mandaue City, situated within the province of Cebu in the Philippines, is a bustling urban center known for its 

commercial and industrial activities. It is located at coordinates 10.3321° N latitude and 123.9357° E longitude. This city 

boasts a high-income status and is surrounded by other densely urbanized cities, as illustrated in Figure 1. In terms of 

climate, the region experiences a distinct wet and dry season pattern, with the rainy season typically spanning from June 

to November. This climate is classified as Coronas climate type 3. Mandaue City receives an average annual precipitation 

of approximately 1,570 millimeters, as reported by JICA in 2010. 

 
Figure 1. Mandaue City, Cebu, Philippines 

 

 

2.2 Flood Occurrence Data Points 

 Utilizing the Flo-2D software, a generated flood hazard and depth models serve as the foundation for flood prediction, 

particularly focusing on the 25-year rain return model. The random flood occurrence points in the study area were 

generated using the random points generator tool within ArcMap 10.8. A total of 1,000 points were created to represent 

flood occurrences, with 444 points indicating non-flooded areas and 556 points representing flooded areas. The data is 

stored in a shapefile format, and the spatial distribution of these points relative to the study area is visualized in Figure 2. 

 
Figure 2. Flood occurrence data points within the study area 
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2.3 Factors Causing Flood in GIS 

 This study incorporates 16 variables, a common set employed in previous research (Aldiansyah & Wardani, 2023; 

Esfandiari et al., 2020; Sunmin et al., 2017). These variables encompass aspect, curvature, elevation, flow accumulation, 

flow direction, geology, slope percentage, land use, NDVI, rainfall, distance from rivers, soil group, SPI, STI, TRI, and 

TWI, as visually represented in Figure 3.  

 

Table 1. Data sources 

 
 

 Table 1 further provides insights into the sources of each variable. Notably, the Digital Elevation Model (DEM) raster 

was utilized to derive aspect, curvature, elevation, slope, flow direction, flow accumulation, TWI, SPI, TRI, and STI 

factors. The river network, land use, soil group, and geology feature dataset were converted into rasters through the 

ArcMap software. The NDVI and rainfall data were sourced from the Google Earth Engine (GEE) dataset, which was 

derived from Landsat-8 Satellite Images spanning the years 2013 to 2022. Additionally, rainfall data was obtained from 

the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). It is worth mentioning that all rasters 

underwent a review process to ensure uniform resolution, coordinate system, and extent. 

 

 
Figure 3. Factors causing flood: a.) aspect; b.) curvature; c.) elevation; d.) flow accumulation; e.) flow direction; f.) 

geology; g.) land use 
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Figure 4. Factors causing flood: h.) NDVI; i.) rainfall; j.) distance from rivers; k.) slope percentage; l.) soil group; m.) 

SPI; n.) STI; o.) TRI; and p.) TWI 

 

2.4 Random Forest in R 

 The Random Forest (RF) model employs innovative approaches to aggregate and fuse data for the creation of multiple 

trees used in making predictions. When selecting the predictive factor, the RF model generates a tree structure akin to a 

Classification and Regression Tree (CART) (Naghibi & Pourghasemi, 2015). The RF algorithm was employed using 

RStudio version 2023.06.2, in conjunction with the randomForest package. Raster data representing various flood 

condition factors were stacked, and the flood data points were divided into 70% for training and 30% for testing purposes. 

The primary parameters that play a pivotal role in the RF model are the quantity of trees and the number of predictive 

factors that determine how the decision tree is constructed to its fullest extent and subsequently left unpruned. In this 

study, the model was executed with 1600 different random seeds, utilizing a total of 1600 trees, and employed cross-

validation as a resampling technique. 

 

2.5 Resampling Approach 

 In this study, the training control method employed is cross-validation. Cross-validation is chosen to enhance the 

robustness of the model's performance evaluation, reducing its reliance on the random division of the dataset. This 

mitigates the potential for acquiring overly optimistic or pessimistic performance estimates. Additionally, cross-validation 

aids in maximizing the utility of the available data, which is particularly beneficial when dealing with a small dataset. In 

this specific study, a 10-fold cross-validation with 5 repetitions is utilized. 

 

2.6 Accuracy Assessment 

 The evaluation of spatial prediction models in flood susceptibility modeling has commonly relied on the utilization of 

the Area Under the Receiver Operating Characteristic Curve (AUC) (Lee et al., 2017; Chen et al., 2020; Mosavi et al., 

2022). AUC is employed to quantitatively appraise the performance of the comprehensive model created for this purpose. 

An AUC value exceeding 0.7 is considered indicative of a favorable model performance (Shabani et al., 2018). In this 

paper, caTools package in RStudio was used to assess the accuracy of the random forest model.  
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3. RESULTS 

 

3.1 Variable Importance 

Feature selection and variable trimming are essential steps in probability-based modeling prediction as they lead to 

more accurate, efficient, interpretable, and robust models. By focusing on the most informative variables and eliminating 

noise, these techniques enable better flood risk assessment and informed decision-making. Hereby, we refer to our original 

model containing all relevant factors as model 1 and the succeeding model with trimmed variables as model 2. 

 

Table 2. Variable Importance of Model Runs 

 
 

Based on our initial run with 16 factors, we have variables that respond to our flood points with scores less than 10. We 

choose to eliminate or trim these factors and interpret these as noisy or irrelevant features which may reduce the chances 

of our model being misled by irrelevant patterns or outliers in these datasets. Moreover, feature selection helps in 

removing irrelevant or redundant features, reducing overfitting, and allowing the model to generalize better to unseen 

data. These are further proven after comparing both models’ accuracy assessments (Table 3).  

 

Table 3. Model Evaluations 
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When comparing the performance of our model runs for flood prediction, we can see that Model 1 (All Variables) 

demonstrates a marginally better AUC ROC, but Model 2 (Variable Snipping) excels in terms of accuracy, Kappa, 

sensitivity, specificity, and balanced accuracy, making it a robust choice for flood prediction tasks.  Model 1 exhibits a 

slightly higher AUC ROC of 0.8716294 compared to Model 2's AUC ROC of 0.8667659, indicating slightly superior 

discrimination between positive and negative cases based on the ROC curve. However, this difference is minimal and 

may not significantly impact performance. Model 2, on the other hand, excels in terms of accuracy, boasting an accuracy 

of 0.8057, surpassing Model 1's accuracy of 0.7914. This suggests that Model 2 makes more correct predictions overall, 

enhancing its reliability. Moreover, Model 2 demonstrates a higher Kappa value (0.6029) compared to Model 1 (0.574), 

indicating a higher level of agreement beyond chance in its predictions, further emphasizing its overall strength.  

 

 
Figure 5. Model AUC ROCs 

 

 

Mcnemar's Test P-Value also favors Model 2 (0.03205) over Model 1 (0.05698), implying a significant difference in 

performance between the two models. Sensitivity and specificity are notable strengths of Model 2, with sensitivity at 

0.7387 and specificity at 0.859, surpassing Model 1's values (Sensitivity: 0.7258, Specificity: 0.8436), indicating Model 

2's superior ability to correctly identify both positive and negative cases. Additionally, Model 2 exhibits a higher Positive 

Predictive Value (0.8063) while maintaining a similar Negative Predictive Value (0.8053) compared to Model 1 (Pos 

Pred Value: 0.7867, Neg Pred Value: 0.7947), signifying its slightly better performance in predicting both positive and 

negative instances. The balanced accuracy metric also leans in favor of Model 2, with a balanced accuracy of 0.7988 

compared to Model 1's 0.7847, showcasing Model 2's superior overall performance, considering both sensitivity and 

specificity. 

 

3.2 Probable Flood Prone Areas 

The results of our models are shown in Figure 6 below. Because of the minute variability in the model’s accuracy 

model 1 and 2’s flood maps seem identical. Flooding in the final model is clearly seen in the vicinity of the city’s major 

rivers, in line with the variable importance of the ‘distance to rivers’ factor as 100%.  

 



 

2023 Asian Conference on Remote Sensing (ACRS2023) 

 
Figure 6. Predicted Urban Flood-prone Areas 

 

 

3.3 Accuracy 

The final flood prediction model's performance is truly impressive, with its accuracy of approximately 80.57% reflecting 

a high degree of correctness in its classifications. However, what truly distinguishes this model is its remarkable AUC 

ROC value of 0.8667659. AUC ROC is a critical metric that gauges the model's ability to differentiate between positive 

and negative cases across varying probability thresholds. An AUC ROC score above 0.5 signifies the model's capacity to 

make accurate distinctions, and a score approaching 1 indicates exceptional discrimination. In this case, the AUC ROC 

score of 0.8667659 emphasizes the model's outstanding ability to distinguish between flood and non-flood events, making 

it exceptionally well-suited for applications where precision is paramount. 

The accompanying 95% confidence interval for accuracy, ranging from 0.7744 to 0.8344, bolsters the credibility of this 

accuracy estimate, providing a confidence range for the true accuracy. This interval suggests a high degree of precision 

in the model's performance evaluation. Importantly, the model significantly outperforms the No Information Rate (NIR) 

with a p-value of less than 2e-16, affirming its effectiveness in flood prediction by a substantial margin. Cohen's Kappa 

coefficient, a measure of agreement beyond chance, stands at 0.6029, indicating a notable level of consensus in the model's 

predictions, further underlining its reliability. 

The model's excellence extends to its sensitivity of 0.7387 and specificity of 0.8590, highlighting its ability to accurately 

identify both flood and non-flood instances. This balanced performance is a testament to the model's versatility and 

reliability across diverse flood risk management scenarios. Positive Predictive Value (Pos Pred Value) at 0.8063 

emphasizes the model's reliability in correctly predicting flood events when it makes positive predictions, while Negative 

Predictive Value (Neg Pred Value) at 0.8053 underscores its precision in predicting the absence of floods when it makes 

negative predictions. 

Considering the prevalence of flood events in the dataset, estimated at 0.4429, the model's Detection Rate of 0.3271 

demonstrates its capability to capture a substantial portion of actual flood occurrences. Detection Prevalence, at 0.4057, 

highlights the model's frequency of flood predictions, indicating its practical utility in identifying areas at risk of flooding. 

Balanced Accuracy, a comprehensive measure accounting for sensitivity and specificity while accommodating class 

imbalances, stands at 0.7988, reaffirming the model's ability to provide a balanced and reliable assessment of its overall 

performance. 
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In sum, our final flood prediction model's outstanding AUC ROC score, combined with its high accuracy and other 

robust performance metrics, positions it as an exceptional tool for dependable flood forecasting. These results underscore 

its potential to make significant contributions to flood risk assessment, early warning systems, and decision-making 

processes in flood management and disaster preparedness. Further refinements and validations are likely to reveal even 

greater potential for this model in real-world flood forecasting applications. 

 

4. CONCLUSION 

This paper gives a comprehensive analysis of the potential of probability-based modeling to help anticipate urban floods 

in Mandaue City, Philippines using probability density function (PDF) and GIS analysis. In this study we used the random 

forest machine learning method to detect flood-prone areas in the city. We obtained positive results for our model runs, 

with an AUC ROC of over 0.75 and a model accuracy of 0.8057. The results of this study seek to inform stakeholders in 

the city in order to create specific strategies for urban environments that could be used to reduce flooding risks and more 

importantly, offers a framework for other cities to apply probability-based modeling to generate tailor-made strategies for 

flood resilience. 
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